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ABSTRACT 
 

First principles pseudopotential method based on density functional theory is used to investigate 
the Structural, Mechanical, Phonon, Thermodynamic and Electronic properties of Mg2Sn. The 
equilibrium properties including lattice constant, bulk modulus, pressure derivative cohesive 
energy, young modulus, shear modulus were determined. The results obtained were compared 
with available experimental and other available results. Mg2Sn was found to be brittle in nature with 
a non-metallic properties as shown by the value of the Cauchy pressure of -4.03. The Phonon 
dispersion curve of Mg2Sn was obtained utilizing the PBE-GGA exchange-correlation potential as 
employed in the Vienna Ab-Initio Simulation Package (VASP) computer code. The gap separating 
the acoustic and the optical branch of the curve was found to be about 50cm

-1
 at X-point. The 
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thermodynamic properties of the material was investigated in the temperature of 0-800K. At room 
temperature, the calculated value of the specific heat capacity (��) is 71.28J/mol which is in good 
agreement with experimental and other results. Mg2Sn was found to a narrow gap semiconductor 
with an indirect bandgap of magnitude of 0.175eV.  
 

 
Keywords: Psuedopotential; phonon; density of state; thermodynamic; plane waves; 

pseudopotential; density functional theory. 
 

1. INTRODUCTION 
 
Magnesium is known to be the eight most 
common element in the Earth crust and the 
fourth most common element in the Earth (after 
iron, oxygen and silicon), making up to 13% of 
the planet’s mass and large fraction of the 
planet’s mantle. 
 
Magnesium and its alloys have an excellent 
combination of properties of which some are 
excellent strength-to-weight ratio, good fatigue 
and impact strengths and relatively large thermal 
and electricalconductivities [1] and excellent 
biocompatibility [2]. Because of the above 
mentioned properties, Magnesium has 
applications in areas such as aerospace, 
Electronics, automotive and biomedical 
applications. 
 
The stannide, germanide and silicide alloys of 
magnesium generally denoted as Mg2X where X 
= Sn, Ge and Si, are a family of group II-IV 
compounds that are narrow gap semiconductors. 
These narrow gap semiconducting compounds 
show many advantages for potential TE 
(Thermoelectric) applications due to the 
abundance of constituents, low density, non-
toxicity and environmental friendliness [3]. 
 
Among various Mg alloys, the Mg-Sn binary 
system is a typical precipitating, hardening 
system. It is a candidate for high strength 
wrought material due to high strength, excellent 
corrosion resistance, high temperature 
superplastic deformation and extrusion capability 
at moderate temperature. In addition, Mg2Sn 
phase has a melting point of 1043K which resist 
dislocation slipping at high temperature and 
improves the mechanical properties at elevated 
temperature [4]. Apart from its promising 
thermoelectric properties, Mg2Sn compound has 
attracted interest as an electrode material for 
rechargeable lithium cells and for its catalytic 
properties. 

 
The electronic and optical properties of Mg2Sn 
have recently been studied by Uma Shankar 

Sharma [5], where the refractive index of Mg2Sn 
wasfound to be 1.01. The work of Yu Rong Jin et 
[6] all has suggested that Mg2Snis a promising 
mid- temperature thermoelectric material with 
maximum ZT value of 1.1 (for p-type Mg2Sn) with 
carrier concentration of9.8	�	10��	�� �. 
 
In this present work, the structural, electronic, 
mechanical, thermodynamic and phonon 
properties of Mg2Sn has been thoroughly 
investigated using quantum Espresso from first 
principle calculations and the values obtained are 
compared with other available  studies.  
 

2. METHODOLOGY AND COMPUTA 
TIONAL DETAILS  

 
The first principle calculation of this work was 
performed using Quantum Espresso package [7]. 
The exchange and correlation were described by 
Perdew-Burke-Erzerhof(PBE) functional in form 
of GGA [8]. PAW method was also used to 
generate the pseudopotential for the elements 
(Mg and Sn). The convergence of the total 
electronic energy as computed in plane wave 
pseudopotential code is determined by two 
important computational parameters, which are 
the number of basis functions (plane wave cut-
off) and the number of K-points (k-spacing).  
 
The number of basis functions was determined 
by running series of self-consistence calculations 
for different values of kinetic energy cut-off 
(ecutwfc) starting from fifty (50Ry) to hundred 
(100Ry) at an interval of 5Ry. The converged 
value of the ecutwfc is 80Ry. The value of the k-
points was also varied from a value of 4 k-
pointmesh to 16 k-point mesh at an interval of 2 
k-point mesh. The two values help in determining 
accurately the electronic ground state properties 
of the system studied in the present work. A self-
consistent ab-initio calculation using the full-
potential linearized augmented plane wave (FP-
LAPW) method within the framework of the spin-
polarized density functional theory (DFT) was 
used to study the structural, electronic, 
mechanical, thermodynamic and phonon 
properties of Mg2Sn.  
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3. RESULTS AND DISCUSSION 
 

3.1 Structural Properties  
 
The antifluorite structure of Mg2Sn with space 
group Fm3�m which has a faced centered cubic 
symmetry was studied in this present work. The 
crystal structure is shown in Fig. 1a below with 
the magnesium atoms in blue and tin atoms in 
ash colour. 
 
The total energies as a function of lattice 
parameter are fitted to Murnaghan equation of 
state and the graphs of energy vs volume and 
pressure vs volume are shown in Fig.1. b-c, the 
equilibrium lattice constant (a), bulk modulus (��) 
and pressure derivative for Mg2Sn were 
determined. The results obtained are shown in 
Table1. It can be seen that the result is in good 
agreement with available experimental and 
theoretical values. 
 

3.2 Mechanical Properties  
 
In order to get a full view of the mechanical 
properties of a material, the elastic constants of 
the material must be considered. Since Mg2Sn 
have a cubic structure, it is defined by three 
independent elastic constants which are 
���,���	���	���  and they are shown in Table 2 
below. From Table 2, we can say that Mg2Sn is 
mechanically stable because it satisfies the well-
known “Born stability criteria” for a cubic crystal 
[9]. 
 

C�� − C�� > 0;	C�� + 2C�� > 0;	C�� > 0 (3.0.1) 
 
Generally, the elastic constant ��� characterizes 
the x direction resistance to the linear 
compression, ���  is the most significant 
parameter, which indirectly determines the 
indentation hardness of a solid. A large ��� 
implies a strong resistance to monoclinic shear in 
the (1 0 0) plane.  
 
Cauchy pressure, ��� − ��� , can be used to 
describe the angular character of atomic bonding 
in metals and compounds [10]. The negative 
value of the Cauchy-pressure implies that the 
material is non-metallic with directional bonding 
and if positive, the material is expected to be 
metallic. From Table 2, it is evident that the 
calculated value of the Cauchy-pressure of 
Mg2Sn at ambient conditions is negative, which 
indicates a non-metallic behavior of the material 
(i.eMg2Sn is predicted to be a brittle material 
similarly as many non-metals).   

The elastic modulus, including bulk modulus (B), 
shear modulus (G), Young’s modulus (E), and 
Poisson’s ratio (�) and also the B/G factor of 
Mg2Snadopting the Voigt-Reuss-Hill average 
approximation are presented in Table 3. 

 
The correlation between the elastic properties of 
single crystals and an aggregate is made by 
employing the Voigt and Reuss continuum the 
ories [11]. Moreover, Hill demonstrated that the 
arithmetic average of the Voigt and Reuss values 
gives a better approximations for the elastic 
properties of materials. For cubic system, Voigt 
and Reuss bounds of B and G can be expressed 
as follows [12]: 
 

�� = �� = 	
(��������)

�
(3.0.2) 

��	 = 	
(������������)

�
(3.0.4) 

�� = 	
�(�������)���

[������(�������)]
(3.0.5) 

 
And the arithmetic mean of B and G can be 
obtained as follow: 

 

� =
�

�
(�� + ��)		���	� =

�

�
(�� + ��)(3.0.6) 

 
Young’s modulus and Poisson’s ratio are major 
elasticity related to characteristic property of a 
material, which are calculated using the following 
formula: 
 

� = 	
���

����
		���			� = 	

�����

�(����)
(3.0.7) 

 
From Table3 above, the calculated values for 
bulk modulus (B), young modulus (E), shear 
modulus (G) and Poisson ratio (�) are in close 
relation with experimental and other theoretical 
values. 

 
The ratio of bulk modulus to shear modulus 
(B/G), proposed by Pugh [13], has been applied 
extensively to assess brittle or ductile behavior of 
materials. A high ratio, B/G, is associated with 
the ductile behavior of materials, whereas a low 
value corresponds to the brittle nature of 
materials. The critical value that separates 
ductile from brittle materials is 1.75. We see from 
the table above that Mg2Sn is brittle in nature. 
 
3.3 Phonon Properties 
 
An important branch of solid state physics is 
lattice dynamics, which concerns itself with the 
vibrations of atoms about their equilibrium sites 



 
 
 
 

Okunzuwa et al.; PSIJ, 24(12): 60-71, 2020; Article no.PSIJ.56771 
 
 

 
63 

 

in a solid. These vibrations are almost 
responsible for the thermal properties (like heat 
capacity, thermal conductivity, thermal expansion 
and so on) of a material [14].  
 

In this present work, the calculation of phonon 
dispersion curve of Mg2Sn was performed 
utilizing the PBE-GGA exchange-correlation 
potential as employed in the Vienna Ab-Initio 
Simulation Package (VASP) computer code. The 
phonon dispersion curves are the aforemen 
tioned material is shown in Fig. 1d. 
 

From Fig. 1d. there is a gap separating the 
acoustic branch and the optical branch of the 
curve. This gap was found to be about 50cm-1 at 
X-point. The states of lower energy (acoustic) are 
dominated by the tin and those of higher energy 
(optical) by the magnesium due to their important 
mass difference. The results obtained in this 
present work is in good relationship obtained by 
J bourgeois et al. [15]. 
 

3.4 Thermodynamic Properties 
 

The thermodynamic properties of Mg2Sn which 
entails the specific capacity ( �� ), the Debye 
vibrational Energy, Debye free Energy, Debye 
entropy, the Debye temperature and sound 
velocity were successfully investigated in this 
present work. The calculations were performed in 
the temperature range of 0-800K.  
 

Fig. 1e-1h below show the result of specific heat 
capacity at constant volume, the Debye entropy, 
Debye Free Energy, and Debye Vibrational 
Energy of Mg2Sn. From Fig. 1e. the specific heat 
capacity at constant volume increases rapidly as 
temperature increases and it approaches the 
Dulong-Petit limit at a very high temperature. At 
low temperature, �� is proportional to��. 
 

As temperature increases, the entropy of Mg2Sn 
increases as seen in Fig. 1f. The free energy in 
Fig. 1g. below decreases as the temperature 
increases. From Fig. 1h, it is clear that the Debye 
vibrational energy increases as the temperature 
is increased. At room temperature (300K), the 
calculated value of the specific heat capacity 
(�� ), Debye temperature (�� ) and the sound 
velocity of Mg2Sn are presented in Table 4.  
 

3.5 Electronic Properties  
 

The Electronic band structure calculation for 
Mg2Sn was done using pseudo -potential and 

plane wave basis set method within the Density 
functional theory (DFT), treating exchange- 
correlation functional with generalized gradient 
approximation (GGA) in the form of 
PredewBerke- Erzndof (PBE) functional as 
implemented in Quantum Espresso package.  

 
Fig. 1i. and Fig. 1j, below show the band 
structure of Mg2Sn with the corresponding 
density of state (DOS).   

 
From Fig. 1i, we see that the conduction band 
minimal state is at X-point which implies that 
Mg2Sn has an indirect bandgap.  The calculated 
bandgap for Mg2Sn is 0.175eV. The obtained 
result for the bandgap is in close agreement with 
0.142eV obtained by Guangsha. S. and 
Emmanouil K. [16].  

 
The DFT method in LDA/GGA is well known to 
underestimate the electronic band gap between 
materials [17]. An efficient method for the 
prediction of fundamental band gaps in solids 
using density functional theory (DFT) as 
proposed by M. K.Y. Chan and G. Ceder [18] is 
advisable. 

 

The semiconducting character of this material 
can be determined from the total density of 
states (DOS) and the individual contribution of 
different orbitals in the partial density of states 
(PDOS). Fig. 1. j-k below show the total density 
of state (DOS) and the partial density of state 
(PDOS) of Mg2Sn. 

 
The density of state (DOS) provides numerical 
information on the states that are available at 
each energy level. The value of zero density of 
states indicates thatthere are no available states 
for occupation in an energetic level [19].  

 
Detailed features of the total density of state 
(DOS) are shown by the partial density of state 
(PDOS) since it gives information about the 
origin of the bands. The fermi level (�� ) is set at 
zero point as shown in the Figs. 1(j-k) below.  
The bands after (conduction band) the fermi 
energy are dense compared to that before the 
fermi energy (valence band).  As a result of this, 
the conduction band contains more peaks. From 
Fig. 1k below, we see that we see that the Sn-3p 
state dominates the valence band while the Mg-
2s state dominates the conduction. 



Fig. 1a. Mg2Sn conventional unit cell t

Table 1. Structural parameters of Mg
 
Mg2Sn Lattice parameter(Å
Present 6.83 
Calculated 6.76 [20] 
Others 6.82 [23] 

 
Table 2. Calculated elastic constants (

 
Mg2Sn ���(GPa) 
Present 71.98 
Experimental [26] 82.40 
Others [27] 69.98 

The values given in the above are in good agreement with experimental values and other recent works

 
Table 3. Voigt-reeuss-hill average of the two approximation of bulk modulus (B), young 

modulus (E), shear modulus (G) and poisson ratio (

Mg2Sn ����	�������
��	���  

Present 42.86 
Experimental [28] 41.30 
Others [29] 40.95 

 
Table 4. The specific heat capacity (

 
Mg2Sn Specific-heat capacity

(��) (J/mol)
Present 71.28 
Calculated 72.50 [30]
Others 74.8 [32] 

The values gotten for the heat capacity, Debye temperature and sound velocity are seen to be in 
agreement with available experimental and other results
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Sn conventional unit cell the magnesium atoms are shown in blue and tin atoms in 
ash colour 

 
Table 1. Structural parameters of Mg2Sn 

Å) Bulk modulus(��) (GPa) Pressure derivative(
42.86 4.26 
46.34 [21] 4.35 [22] 
40.61[24] 4.19 [25] 

Table 2. Calculated elastic constants (���,���	��� 	���) and cauchy-pressure (�
Mg2Sn 

 ���(GPa) ���(GPa) ���

28.29 32.40 -4.03
20.80 36.60 -15.80
26.37 32.03 -5.66

The values given in the above are in good agreement with experimental values and other recent works

hill average of the two approximation of bulk modulus (B), young 
modulus (E), shear modulus (G) and poisson ratio (�) 

 
������� 	(�) Young 

modulus (E) 
in GPa 

Shear 
modulus 
(G) in GPa 

Poisson 
ratio (�) 

68.29 27.66 0.23 
80.30 34.20  
71.50 29.57  

Table 4. The specific heat capacity (��), debye temperature (�� ) and the sound velocity of 
Mg2Sn 

heat capacity 
) (J/mol) 

Debye temperature 
�� (K) 

Sound velocity
(m/s) 

310.51 3112.50 
] 336.8 [30] 2960 [31] 

 307.6 [32] 3000  
The values gotten for the heat capacity, Debye temperature and sound velocity are seen to be in 

agreement with available experimental and other results 
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he magnesium atoms are shown in blue and tin atoms in 

Pressure derivative(��
′ ) (GPa) 

��� − ���) of 

�� − ��� 
4.03 
15.80 
5.66 

The values given in the above are in good agreement with experimental values and other recent works 

hill average of the two approximation of bulk modulus (B), young 

B/G 

1.55 
1.21 
1.36 

) and the sound velocity of 

Sound velocity 

 

The values gotten for the heat capacity, Debye temperature and sound velocity are seen to be in close 



 
Fig. 1b. Graph of energy of Mg

 
Fig. 1c. Graph of 

Okunzuwa et al.; PSIJ, 24(12): 60-71, 2020; Article no.PSIJ

 
65 

 

1b. Graph of energy of Mg2Sn against volume 
 

raph of pressure of Mg2Sn against volume 
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Fig. 1d. The phonon dispersion curve of Mg
 

 

Fig. 1e. the specific heat capacity of Mg
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The phonon dispersion curve of Mg2Sn 

specific heat capacity of Mg2snin the temperature range of 0-
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-800K 



 
Fig. 1f. The entropy of Mg

 
Fig. 1g. Debye free energy 
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he entropy of Mg2Snin the temperature range of 0-800K 
 

free energy of Mg2Sn in the temperature range of 0-800K
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800K 



 
Fig. 1h. Debye vibrational energy 

 
Fig. 1i. The
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vibrational energy of Mg2Sn in the temperature range of 0-
 

1i. The electronic band structure of Mg2Sn 
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-800K 

 



Fig. 1j. T

 
Fig. 1k. The 
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Fig. 1j. Total density of state (DOS) of Mg2Sn 

The partial density of state (PDOS) of Mg2Sn 
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5. CONCLUSION 
 
The first principle calculation using Quantum 
Espresso package was successfully employed to 
optimize the structural properties and study the 
mechanical, phonon, thermodynamic and 
electronic properties of Mg2Sn.  
 
The lattice parameter of the material was found 

to be 6.83Å  which is in good agreement with 
available results. Mg2Sn was found to be 
mechanically stable by satisfying the well-known 
“Born stability criteria”. The B/G ratio of the 
material was found to be 1.55, which shows that 
Mg2Sn is brittle in nature. . The ground state 
properties and the elastic stiffness constants of 
this material are in good agreement with 
experimental and other results. From the phonon 
dispersion curve obtained in this work, the 
material is seen to be thermodynamically stable. 
The specific heat capacity and Debye 
temperature of Mg2Sn was found to be 
71.28J/mol and 310.5K which is in good 
agreement with experimental and other available 
results. From the electronic band structure, 
Mg2Sn was found to a narrow gap semiconductor 
with indirect bandgap of magnitude of 0.1751eV.  
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